博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
SQL Server调优系列进阶篇(查询优化器的运行方式)
阅读量:6262 次
发布时间:2019-06-22

本文共 3059 字,大约阅读时间需要 10 分钟。

前言

前面我们的几篇文章介绍了一系列关于运算符的基础介绍,以及各个运算符的优化方式和技巧。其中涵盖:查看执行计划的方式、几种数据集常用的连接方式、联合运算符方式、并行运算符等一系列的我们常见的运算符。有兴趣的童鞋可以点击查看。

本篇介绍在SQL Server中查询优化器的工作方式,也就是一个好的执行计划的形成,是如何评估出来的,作为该系列的进阶篇。

废话少说,开始本篇的正题。

技术准备

数据库版本为SQL Server2008R2,利用微软的一个更简洁的案例库(Northwind)进行分析。

 

正文内容

在我们将写好的一个T-SQL语句抛给SQL Server准备执行的时候,首选要经历的过程就是编译过程,当然如果此语句以前在SQL Server中执行过,那么将检测是否存在已经缓存的编译过的执行计划,用以重用。

但是,执行编译的过程需要执行一系列的优化过程,关于优化过程大致分为两个阶段:

1、首先,SQL Server对我们写的T-SQL语句先执行一些简化,通常由查询本身来寻找交互性及重新安排操作的顺序。

在此过程中,SQL Server侧重于语句写法调整,而不过多的考虑成本或者分析索引可用性的等,最重要的目标就是产生一个有效的查询。

然后,SQL Server才会加载元数据,包括索引的统计信息,进入第二个阶段。

2、在这个阶段才是SQL Server一个复杂的优化过程,这个阶段SQL Server会根据上一阶段形成的执行计划运算符进行评估和尝试,甚至于重组执行计划,所以相对这个优化过程是一个耗时的过程。

通过如下流程图,来理解该过程:

这个图看上去有点复杂,我们来详细分析下,其实就是将这个优化阶段分为3个子阶段

<1>这个阶段仅考虑串行计划,也就说单处理器运行,如果这个阶段找到了一个好的串行计划,优化器就不会进入下一阶段。所以对于数据量少的情况,或者执行语句简单的情况下,基本采用的都是串行计划。

当然,如果这个阶段开销比较大,那么会进入到第2个阶段,再进行优化。

<2>这个阶段首先对第1阶段的串行计划进行优化,然后如果环境支持并行化操作,则进行并行化操作,通过进行比较,然后进行优化后的成本如果比较低则输出执行计划,如果成本还是比较高,则进入第2阶段,再继续优化。

<3>其实到达这个阶段就是优化的最后一个阶段了,这个阶段会对第2个阶段中采用串行和并行的比较结果进行最后一步优化,如果串行执行好那就进一步优化,当然如果并行执行好的话,则再继续并行优化。

其实第3阶段是查询优化器的无奈之举,当到达第3阶段了就是一个补救阶段,只能最后做优化了,优化完好不好的就只能按照这个执行计划执行了。

那么上述过程中,各个阶段的优化的原则有哪些:

关于这些优化器的最重要原则的就是:尽可能的减少扫描范围,不管是表或者索引,当然走索引比表好,索引的量也是越少越好,最理想的情况是只有一条或者几条。 

所以,SQL Server也尊重上述原则,一直围绕着这个原则去优化。

 

一、筛选条件分析

所谓的筛选条件,其实就是我们所写的T-SQL语句中的WHERE语句后面的条件,我们会通过这里面的语句进行尽量缩小数据扫描范围,SQL Server通过这些语句来优化。

一般格式如下:

column  operator  <constant or variable>

或者

<constant or variable>  operator  column

而这上面格式中operator包括:=、>、<、=>、<=、BETWEEN、LIKE

比如:name='liudehua'、price>4000、4000<price、name like 'liu%'、name='liudehua' AND price >1000

上面这些语句是我们写的语句中最常用的方式,并且这种方式也将被SQL Server用来减少扫描,并且这些列被索引覆盖,那将尽量采取索引进行获取值,但是SQL Server也不是万能的,有些写法它也是不能识别的,也是我们写语句要避免的:

a、where name like '%liu'这货就不能被SQL Server优化器识别,所以它只能通过全表扫描或者索引扫描执行。

b、name='liudehua' OR price >1000,这个同样也是失效的,因为它不能利用两个的筛选条件进行逐步减少扫描。

c、price+4>100这个同样不被识别

d、name not in ('liudehua'、‘zhourunfa’),当然还有类似的:NOT 、NOT LIKE

举个列子:

SELECT CustomerID FROM OrdersWHERE CustomerID='Vinet'SELECT CustomerID FROM OrdersWHERE UPPER(CustomerID)='VINET'

所以上述的方式写语句的时候需要尽量避免,或者采取变通的方式实现。

 

二、索引优化

经过上面的筛选范围的确定之后,SQL Server紧接着开始索引的选择,首先要确定的第一件事就是筛选字段是否存在索引项,也就是说是否被索引覆盖。

当然,如果查询项为索引覆盖最好,如果不被索引覆盖,那么为了充分利用索引的特性,就引入了书签查找(bookmark)部分。

所以,鉴于此,我们在创建索引的时候,所参考的属性值就为筛选条件的列了。

关于利用索引优化的选择:

CREATE INDEX EmployeesName ON Employees(FirstName,LastName)INCLUDE(HIREDATE) WITH(ONLINE=ON)GOSELECT FirstName,LastName,HireDate,EmployeeID FROM EmployeesWHERE FirstName='Anne'

当然也不尽然只要查询列存在索引覆盖就执行索引查找,这取决于扫描的内容的多少,所以对于索引的利用程度还取决获取内容的多少

来举个例子:

CREATE INDEX NameIndex  ON person.contact(FirstName,LastName)GOSELECT * FROM Person.ContactWHERE FirstName LIKE 'K%'SELECT * FROM Person.ContactWHERE FirstName LIKE 'Y%'GO

完全相同的查询语句,来看执行计划:

完全相同的查询语句,产生的查询计划完全不同,一个是索引扫描,一个则是高效的索引查找。

这里我只告诉你:FirstName like 'K%'的有1255行;而FirstName like 'Y%'只有37行,其中

其实,关于这里的原因就是统计信息在作怪了。

所以,特定的T-SQL语句不一定生成特定的查询计划,同样特定的查询计划不一定是最优的方式,影响的它的因素很多:关于索引、关于硬件、关于表内容、关于统计信息等诸多因素影响。

关于统计信息这块是大篇幅内容,我们放在以后的篇幅中介绍,有兴趣的可以提前关注。

 

有问题可以留言或者私信,随时恭候有兴趣的童鞋加入SQL SERVER的深入研究。共同学习,一起进步。

 

文章最后给出前面几篇的连接,以下内容基本涵盖我们日常中所写的查询运算的分解,看来有必要整理一篇目录了.....

 

 

如果您看了本篇博客,觉得对您有所收获,请不要吝啬您的“推荐”。

转载地址:http://ubzpa.baihongyu.com/

你可能感兴趣的文章
各大类库的类工厂
查看>>
asp.net关于上传文件修改文件名的方法
查看>>
敏捷结果30天之第九天:使用必须、应该、可以来确定每天事情的优先级
查看>>
NFS在redhat中的一些简易应用
查看>>
mysqlbinlog查看编码问题
查看>>
进程通信(VC_Win32)
查看>>
MVP福利--利用Azure虚拟机玩Windows Server 2012
查看>>
Mac中将delete键定义为删除键
查看>>
python 函数关键参数
查看>>
ubuntu一键安装lamp
查看>>
漫谈 Clustering (1): k-means
查看>>
SQL Server 查询性能优化——索引与SARG(三)
查看>>
Oracle EBS:打开工作日历查看
查看>>
浅谈字节序(Byte Order)及其相关操作
查看>>
OSG闪存
查看>>
C#迭代器
查看>>
[Android] Change_xml.sh
查看>>
POJ-1925 Spiderman 动态规划
查看>>
实战BULK COLLECT(成批聚合类型)和数组集合type类型is table of 表%rowtype index by binary_integer ....
查看>>
Linux编程基础——线程概述
查看>>